Riser System at Perdido Features Newest GE Oil & Gas Tensioners

Top-tensioned production, drilling risers only alternative for record deepwater truss spar installation over DVA wells

In the post-Katrina/Rita Gulf of Mexico hurricane era, new met ocean criteria and acceptance requirements for “100-year and 1000 year” events calls for both new and improved elements to be incorporated into the design of deepwater drilling and production equipment.

Because the spar is the industry’s deepwater and ultra-deepwater floating production platform of choice, new changes are being made in the tensioning and motion compensation hardware necessary to stabilize risers on spars against heavy storm wave and wind forces. One such progression involves the choice of ram-type, or “push-up” tensioners for top-tensioned vertical production and drilling/workover risers. Shell Exploration & Development’s Perdido Regional Development Spar is equipped with this type of riser tensioning equipment supplied by GE Oil & Gas (formerly GE Vetco Gray).

Perdido spar riser tensioners in various stages of installation prior to installation of the topsides. The six tensioners are in two rows in the center square of the spar deck. The three units on the bottom row are installed complete and stroked down (closed) awaiting commissioning. The remaining units on the top row are in various stages of installation.

From the beginning Shell, as operator for BP and Chevron, planned to employ a direct vertical access (DVA) configuration at the Perdido spar’s host location in the Great White field in order to bring oil and natural gas production from the field’s subsea wet tree wells to the spar’s topsides for subsequent handling and export back to shore. This would be the first such DVA setup to be installed on a truss-type spar.

Top-tensioned risers were essential for the Perdido spar, at a record depth of some 7,820 ft (2,384m) from spar topsides to the sea floor. Buoyancy can tensioned risers employed on spar platforms in much shallower water would have been impracticable.

An assembled Perdido riser tensioner during factory acceptance testing, partially stroked out, but without the accumulators.

Additionally, instead of having a riser and dry tree for each well, the spar would be equipped with only six risers – five pipe-in-pipe risers for handling production from multiple subsea wells and one high-pressure riser for drilling and completions. Instead of being connected with individual wells, the production risers would be connected to five seafloor caisson/electric submersible pump (ESP) boosting stations that would handle flow from 22 subsea DVA wells and 11 subsea offset wells. In addition to increased efficiency due to lighter weight, having only six risers would help keep the spar’s topsides decks smaller and thus, less capital intensive.

The single, high-pressure DVA drilling riser would be used to allow a topside-mounted rig to drill, complete and to perform interventions on wells at significantly lower cost than employing deepwater mobile rigs for such purposes. In addition, the topside rig would use this riser to gain access to the seafloor booster stations for possible change-out of ESP equipment, should that become necessary.


First offshore installation


Six GE Oil & Gas hydraulic/pneumatic tensioners were installed to support the risers aboard the Perdido spar. The installation was made at the spar’s offshore site rather than the conventional installation at a shore base prior to float-out. This was the first time such a remote offshore ram riser tensioner installation has been made.

In general, riser tensioners are designed to provide the necessary interface to support riser weight and to compensate for relative motion due to spar offset, heave, thermal expansion, payload changes and subsidence. A typical MODU drilling riser tensioner consists of a hydraulic cylinder with sheaves at both ends. The cylinder is connected to a number of high-pressure gas bottles, or accumulators, via a medium separator. A wire rope is rigged in the cylinder with one end connected to the fixed part of the tensioner and the other end is connected to the riser.

Top-tensioned risers connected directly to the spar hull provide a range of stiffness at the hang-off point. This stiffness variation provides a tradeoff between riser stroke relative to the hull and the tension on the riser, and combined with lower operating costs, are the practical alternative to buoyancy can-supported riser systems.

The GE Oil & Gas ram-type riser tensioner configuration uses multiple (four) hydro-pneumatic compression cylinders that employ efficient, low-fluid volume to allow for large internal accumulator volumes that, depending upon the application, minimize the requirement for external accumulators while providing for the required range of stiffness. Combined with durable construction and relative low accumulator pressures, the GE Oil & Gas tensioners help reduce risk elements and increase tensioner life. Being small in footprint versus their capacity, they also allow for more available topsides deck space.

Each of the GE Oil & Gas tensioners is equipped with four hydro-pneumatic cylinders, each operating independent of the other but combined, constitute a “team.”. Should trouble be experienced with any one cylinder, it can be easily removed and either repaired at the site or sent to shore. Meanwhile, as evidenced by testing under load at GE’s Houston manufacturing center, the remaining three cylinders are capable of holding sufficient tension to continue required motion compensation.


Coating reliability enhanced


To help meet Shell’s 25-year lifespan design requirement and provide high reliability in a corrosive environment, the rods of the Perdido spar riser tensioners are protected with a newly developed coating that virtually eliminates the threat of degradation by acids contained in oilfield chemicals.

Tensioner pressure feedback is monitored and adjusted with equipment located in the Spar topsides control room.

Significant to its continued innovation and development of new hardware, GE Oil & Gas riser tensioner technology was a finalist for the Woelfel Best Mechanical Engineering Achievement Award at the 2009 Offshore Technology Conference.

GE Oil & Gas
4424 W. Sam Houston Parkway North
Suite 100
Houston, Texas 77041
Tel: 281-448-4410
Website: www.geoilandgas.com

Related Articles

Fabricating the Single-Lift Topsides

07/01/2010 The Perdido team faced a tough decision. A conventional topsides design required a series of modules that would have to be fabricated onshore, then...

Technology and Teamwork Achieve World Class Success for Shell Perdido

04/01/2010 In the high-risk ultra deepwater environment, success depends on two key components: technology and teamwork. Shell and Technip have applied innova...

The Bayou Companies provide welding, coating and insulation services around the world

04/01/2010 Straight on the heels of successfully fabricating and supplying pipe line end terminals (PLET) for Shell’s Ursa/Princess waterflood project, ...

Oceaneering Installs Record Diverless Deepwater HOOPS Tie-in

04/01/2010 Who would cut a perfectly good pipeline? Oceaneering worked with Shell to add a new tie-in for the Perdido oil export pipeline to the currently ope...

Kiewit Offshore Services experience and no surprises approach results in quality services for the offshore oil and gas industry

04/01/2010 KOS’ extensive experience in fabricating large, complex topsides enabled the company to meet the challenges associated with the multi-discipl...

Noble Corp.’s innovative engineering helps Shell to develop Perdido

04/01/2010 Long before the industry dared to dream that operating in the ultra-deepwater of the U.S. Gulf of Mexico could be possible, Noble took a bold and p...


04/01/2010 Two extremes define Perdido’s early development wells: The water is very deep, and the reservoirs are very shallow below the mudline. The dif...

H&Ps Rig 205 ready for Perdido Spar drilling, completions, interventions


With special modifications, 20,000-ft SCR rig to tackle subsea wells located in up to 9,627 feet of water


04/01/2010 As many as 220 people per shift came to work aboard the Perdido deepwater spar during the peak of commissioning and hookup, but it was a short comm...
White Papers

Definitive Guide to Cybersecurity for the Oil & Gas Industry

In the Oil and Gas industry, there is no single adversary and no single threat to the information tech...

UAS Integration for Infrastructure: More than Just Flying

Oil and gas companies recognize the benefits that the use of drones or unmanned aerial systems (UAS) c...

Solutions to Financial Distress Resulting from a Weak Oil and Gas Price Environment

The oil and gas industry is in the midst of a prolonged worldwide downturn in commodity prices. While ...
Sponsored by

2015 Global Engineering Information Management Solutions Competitive Strategy Innovation and Leadership Award

The Frost & Sullivan Best Practices Awards recognise companies in a variety of regional and global...
Sponsored by

Three Tips to Improve Safety in the Oil Field

Working oil fields will always be tough work with inherent risks. There’s no getting around that. Ther...
Sponsored by

Pipeline Integrity: Best Practices to Prevent, Detect, and Mitigate Commodity Releases

Commodity releases can have catastrophic consequences, so ensuring pipeline integrity is crucial for p...
Sponsored by

AVEVA’s Digital Asset Approach - Defining a new era of collaboration in capital projects and asset operations

There is constant, intensive change in the capital projects and asset life cycle management. New chall...
Sponsored by

Transforming the Oil and Gas Industry with EPPM

With budgets in the billions, timelines spanning years, and life cycles extending over decades, oil an...
Sponsored by
Available Webcasts

Better Data, Better Analytics, Better Decisions

When Tue, Oct 27, 2015

The Oil & Gas industry has large amounts of data stored in multiple systems which are purpose built for certain tasks. However, good decisions require insights based upon the data in all of these systems. These systems in turn do not talk to each other. So the process of analyzing data, gaining insights, and making decisions is a slow one and often a flawed one. Good decisions require accurate analytics and accurate analytics require superior/sustainable data quality and governance. This webinar focuses on:

  • The importance of data quality and governance
  • How technological advances are making data quality and governance sustainable in order to get the accurate analytics to make solid decisions.

Please join us for this webcast sponsored by Seven Lakes Technologies and Noah Consulting.


Operating a Sustainable Oil & Gas Supply Chain in North America

When Tue, Oct 20, 2015

Short lead times and unpredictable conditions in the Oil & Gas industry can create costly challenges in supply chains. By implementing a LEAN culture of continuous improvement you can eliminate waste, increase productivity and gain end-to-end visibility leading to a sustainable and well-oiled supply chain.

Please join us for this webcast sponsored by Ryder System, Inc.


On Demand

Leveraging technology to improve safety & reliability

Tue, Sep 22, 2015

Attend this informative webinar to learn more about how to leverage technology to meet the new OSHA standards and protect your employees from the hazards of arc flash explosions.


The Resilient Oilfield in the Internet of Things World

Tue, Sep 22, 2015

As we hear about the hype surrounding the Internet of Things, the oil and gas industry is questioning what is different than what is already being done. What is new?  Using sensors and connecting devices is nothing new to our mode of business and in many ways the industry exemplifies many principles of an industrial internet of things. How does the Internet of Things impact the oil and gas industry?

Prolific instrumentation and automation digitized the industry and has changed the approach to business models calling for a systems led approach.  Resilient Systems have the ability to adapt to changing circumstances while maintaining their central purpose.  A resilient system, such as Maximo, allows an asset intensive organization to leverage connected devices by merging real-time asset information with other critical asset information and using that information to create a more agile organization.  

Join this webcast, sponsored by IBM, to learn how about Internet of Things capabilities and resilient systems are impacting the landscape of the oil and gas industry.


Emerson Micro Motion Videos

Careers at TOTAL

Careers at TOTAL - Videos

More than 600 job openings are now online, watch videos and learn more!


Click Here to Watch

Other Oil & Gas Industry Jobs

Search More Job Listings >>
Stay Connected